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Preface

This work began with a moment in a recording.

During the second chorus of The Man Who Sold the World on Nirvana’s MTV Un-
plugged in New York (1994, 15:55), Kurt Cobain’s guitar produces a brief interference
during the silence between words—a dissonance that resolves within a beat. It is not a
mistake. It is not deliberate, exactly. It is a texture: a point where two signals collide

and produce something that neither contains alone.

That moment had a specific quality to me—a sense of movement, of something
happening that was distinct from the notes before and after it. Not a chord change.
Not a dynamic shift. Something more fine-grained: a perturbation in an ongoing

prediction about what the music was doing.

I wanted to know if a machine could internalize that. Not reproduce it. Not label
it. But develop its own sense that something just changed—and know what kind of
change it was, and how confident it should be, and whether it had encountered that

kind of change before.

This is not a paper about music. It is not, ultimately, a paper about octonions either,
though that is where the formal investigation begins. It is a paper about what a system
can know about its own experience of change, and what breaks when you try to build

that capacity, and what each breakage tells you about what was missing.

The octonions are here because their non-associative algebra provides a clean, falsifiable
test case for the question: does a neural network encode structure, or merely the
appearance of structure? The answer—emphatically the latter—set off the chain of

failures that constitutes this paper.

The Unplugged recording is here because it is where the question started, and because
the same architecture that fails to learn octonion algebra succeeds at discovering event
categories in 66 minutes of live audio. The machine cannot compute ej(ezeq). But
it can tell you that something happened during the second chorus that it hadn’t seen

before.
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https://www.youtube.com/watch?v=pOTkCgkxqyg&t=955

We report a sequence of failures. A large language model achieves 100% accuracy
classifying octonion multiplication expressions—and encodes zero algebraic content (R? < 0).
A recurrent integrator learns the algebra but cannot predict its own errors. Activation
steering destroys syntax before it corrects computation. Chain-of-thought prompting changes
nothing because causal attention processes expression tokens identically regardless of prefix.
Each failure is diagnostic: it identifies a specific missing capacity and motivates the next
architectural intervention. Following this chain of breakages, we arrive at a continuous-
time predictive coding system—a “cognitive middleware” between language model and
formal solver—that passes eight falsifiable levels of self-knowledge: detection, localization,
recall, classification, fragility awareness, anticipation, calibrated uncertainty, and adaptive
information seeking. The middleware requires no algebraic competence. It operates entirely
on prediction-error dynamics over 8-dimensional observation vectors, discovering perturbation
categories from surprise signatures alone. The central finding is a computational hierarchy:
syntax without content (the LLM knows the form but not the math), content without self-
knowledge (the integrator knows the math but not its own errors), and self-knowledge without
content (the middleware knows what it doesn’t know without knowing what anything is). We
argue that self-knowledge is architecturally orthogonal to domain competence and emerges
from per-position modularity, not from training signal or model scale.

1 Introduction: A Curriculum of Breakage

This paper is structured as a sequence of failures, each of which turned out to be a finding. We
did not set out to build a self-aware system. We set out to determine whether large language
models encode the algebraic structure of octonion multiplication, and discovered that they do
not. The subsequent investigation—into why they do not, what happens when you try to force
the issue, and what alternative architectures can and cannot achieve—produced a taxonomy of
computational limitations that we believe is more informative than any single positive result.

The octonions O are the largest normed division algebra. Their multiplication is non-
commutative (e;e; # eje;) and non-associative ((e;ej)er # ei(ejer)), governed by the Fano
plane—a combinatorial structure with 7 oriented triples that determines all 480 sign assignments.
This makes octonion arithmetic a clean test case for algebraic reasoning: the rules are finite,
deterministic, and learnable in principle, but they require tracking relational structure that is
not linearly separable from token identity.

We began by asking a simple question: does a transformer trained on natural language
encode these rules? The answer—emphatically no—opened a sequence of increasingly targeted
interventions, each of which broke in a way that told us exactly what was missing.

1. The probe finds syntax, not algebra (Section . A linear probe achieves 100%
accuracy on a binary classification task over octonion expressions, using a single neuron.
But regression heads that attempt to predict the actual 8-dimensional product vector fail
completely (R? < 0). The probe is reading expression structure, not mathematical content.

2. Steering vectors destroy the patient (Section . Activation steering at the optimal
layer and magnitude flips 6 of 16 outputs (vs. 5/16 baseline). The signal is distributed, not
directional—there is no “algebra subspace” to amplify.

3. Chain-of-thought changes nothing (Section. Causal attention ensures that expression
tokens are processed identically regardless of any reasoning prefix. CoT cannot inject
information backward into the representations that need it.

4. The GRU learns algebra but not itself (Section . A recurrent integrator with
ground-truth intermediate supervision achieves positive R? on algebraic prediction. But a
meta-probe on the GRU’s own error signal returns R?> = —1.23. The system encodes the
world but has zero information about its own reliability.



5. The meta-boost does nothing (Section @ Hyper-dimensional state injection from
error patterns degrades performance (AR? = —0.014). Error patterns encoded in a space
without algebraic content produce noise, not signal.

6. The middleware discovers categories without content (Section [7). A dual-rate
predictive coding system operating on prediction-error dynamics alone—mno algebraic
knowledge, no domain information—discovers perturbation types from surprise signatures
with 94.4% accuracy across 6 categories. It passes 8 levels of self-knowledge. It knows what
it doesn’t know, without knowing what anything is.

7. Finite attention creates its own pathology (Section . Under energy constraints,
the system either smears categories (clean observations) or hallucinates new ones (noisy
observations). A closed feedback loop mitigates but cannot eliminate this: the system
knows it is degraded and refuses to commit.

8. The solver closes the loop (Section [J). Formal verification (Z3) confirms that unsuper-
vised categories correspond to real algebraic operations—but one category conflates two
operations with similar phenomenology. The system is correct about its own ontology even
when that ontology is coarser than ground truth.

The resulting architecture—an LLM for parsing, a continuous-time middleware for self-
knowledge, and a formal solver for ground truth—achieves what none of its components can
alone. The LLM has syntax without algebra. The solver has algebra without perception. The
middleware has self-knowledge without content. Together, they constitute a system that can
compute, monitor, and verify.

We make the following contributions:

e A systematic negative result: transformers and SSMs encode zero algebraic content for
octonion multiplication despite 100% syntactic classification accuracy.

e A falsifiable hierarchy of self-knowledge (8 levels) with operationalized tests, applicable to
any dynamical system over observation vectors.

e The finding that self-knowledge requires per-position modularity (shared state: p = 0.12;
per-position: p = 0.92) and is architecturally orthogonal to domain competence.

e Evidence that finite attention budgets create complementary failure modes (smearing in
clean regimes, splitting in noisy regimes) that a reliability feedback loop can diagnose but
not fully correct.

e A domain-transfer demonstration: the same architecture applied to live audio (66 min,
MTYV Unplugged) discovers musical event categories from prediction error alone.

2 Failure 1: The Probe Finds Syntax, Not Algebra

2.1 Setup

The octonions O have 7 imaginary basis elements eq, ..., e; whose multiplication is governed by
the Fano plane: 7 oriented triples (1,2,4), (2,3,5), (3,4,6), (4,5,7), (5,6,1), (6,7,2), (7,1,3)
that determine all products. For a triple (a, b, c): eqep = +e. and epe, = —e.. Each product e;e;

(i,j € {1,...,7}, i # j) yields an 8-dimensional vector over the basis {eg,e1,...,e7}.

We generate expressions using 4 text templates per product ("e{i} * e{j}", "e{i}*e{jl}",
"compute e{i} * e{j}", "e{i} times e{j}") and extract hidden states from two architectures:
Qwen3-4B |Qwen Team) 2025|, a 4-billion parameter transformer (36 layers, hidden dimension
2560, loaded in bfloat16), and Mamba-1.4B, a state-space model (loaded in float32 for gradient



stability through the recurrence). For each expression, we extract the hidden state at the last
token position—where the causal model accumulates full context—at every layer.
We train two types of probes on these hidden states:

1. A binary linear probe (logistic regression) that classifies whether an expression corresponds
to version A or version B of a product (e.g., eje; vs. eje;).

2. An 8D regression head (ridge regression, R?°®0 — R®) that attempts to predict the actual
product vector.

Training uses 42 basis pairs across all templates; validation uses a held-out set of pairs. Ground
truth vectors come from the algebraic multiplication table.

2.2 The Binary Probe: 100% Accuracy

The binary probe achieves 100% accuracy on both train and test sets, with test confidence
0.9999. A single neuron (dimension 1217, weight 0.396) is sufficient to separate version A from
version B at the penultimate layer. The top discriminative dimensions (1217, 20, 199) carry
weights between 0.20 and 0.40—a remarkably low-dimensional signal.

This result is architecture-independent: Mamba-1.4B produces the same 100% separation
despite having no attention mechanism. The convergence suggests that the signal is not an
artifact of transformer self-attention but a property of how language models represent expression
structure in general.

At first glance, this looks like evidence that the models encode octonion algebra. A system
that can perfectly distinguish e;e; from eje; must, it seems, have learned that these products
differ. The regression head tells a different story.

2.3 The Regression Head: Total Failure

The 8D regression head fails completely. At every layer of both architectures, R?> < 0—the
regression predicts worse than a constant baseline. Test accuracy (predicting the correct basis
element) is 11.2% against a chance level of 6.25% (1/16 basis products). Validation cosine
similarity between predicted and true product vectors is near zero (—0.03 at layer 19, Qwen3-4B).

The LM head analysis reveals why: the penultimate-to-final layer transition compresses the
representation by a factor of 3.6, while the final-to-logits projection expands by 12.5x. There is
no information bottleneck at the output stage—the model has the capacity to express 8D vectors.
It simply does not encode them.

The 100% binary accuracy and the negative R? are not contradictory. They reveal that the
probe is detecting expression template structure—which tokens appear in which positions—rather
than the mathematical relationship between operands and result. The model separates “ejes”
from “ege1” because these are different token sequences, not because it knows their products
differ by a sign. This is syntactic classification, not algebraic reasoning.

Finding 1. LLMs achieve perfect syntactic separation of octonion expressions while encoding
zero algebraic content. The bottleneck is the training objective (next-token prediction), not the
architecture.

3 Failure 2: Steering Vectors Destroy the Patient

Given that the binary probe finds a separation direction, a natural intervention is activation
steering: add a scaled version of the difference vector between the mean hidden states of version-A
and version-B expressions, attempting to push incorrect outputs toward correct ones.



We extract the steering vector at layer 34 of Qwen3-4B (near-final, where the binary probe
signal is strongest). The raw divergence norm between version centroids is 488.70, but the
d-prime (signal-to-noise ratio of the separation) is only 0.381—indicating that the “algebraic
direction” is buried in high variance.

We sweep steering magnitudes o € {—500, —200, —100, —50, —20, —10, —5, 0, 5, 10, 20, 50, 100, 200, 500}
and count how many of 16 version-B outputs flip to the correct version-A answer.

e Baseline (a = 0): 5/16 already correct (the model’s default accuracy on these pairs).
e Best result (o = —20): 6/16 correct—a gain of exactly one position.

e High magnitude (o = —50): back to 5/16. Larger magnitudes (|a| > 100) change all 16
outputs, but to wrong answers—the steering vector destroys syntactic coherence before it
improves algebraic accuracy.

The steering vector does not pick out an “algebra subspace.” The algebraic signal, to the
extent it exists at all, is distributed across the full 2560 dimensions of the hidden state. Amplifying
along the mean-difference direction amplifies noise faster than signal. This is consistent with the
regression result: there is no concentrated algebraic representation to steer toward.

Failure 1. There is no “algebra direction” in representation space. The algebraic signal, if present
at all, is distributed across the full dimensionality of the hidden state and cannot be amplified
without destroying the syntactic structure that the model does encode.

4 Failure 3: Chain-of-Thought Changes Nothing

Chain-of-thought (CoT) prompting has been shown to improve reasoning in LLMs by eliciting
intermediate steps before a final answer. A natural hope is that a CoT prefix—“Let me work
through the Fano plane rules. .. —might inject algebraic knowledge into the representations that
the probe reads.

This hope fails for a precise architectural reason. In a causal (autoregressive) transformer,
the hidden state at position ¢ is a function of tokens at positions 0,1,...,¢ only. A reasoning
prefix occupying positions 0 through k£ can influence the representation of the answer token at
some position > k, but it cannot alter the representations of the expression tokens themselves.
The expression “ej - eo” at positions k+1 through k+m is processed identically regardless of
what precedes it—each expression token attends only to earlier expression tokens and the prefix,
producing the same hidden state it would produce with any other prefix of equal length.

We verify this empirically using cross-branch leakage analysis: for a nested expression
((ei-ej)-ex), we track cosine similarity between the hidden states of tokens in opposite parenthetical
branches across all 36 layers. The probe token at the junction sees no branch-crossing information
at early layers; similarity spikes only at the final layers where the LM head projects to output
logits. The expression tokens’ internal representations are invariant to the CoT prefix.

This is not a failure of prompting strategy. It is a consequence of causal masking: CoT
cannot retroactively inject information into positions that have already been computed. The
representations that would need to change—those encoding the operands and their relationship—
are fixed before the reasoning chain begins.

Finding 2. Chain-of-thought reasoning cannot retroactively inject algebraic knowledge into
expression token representations under causal attention. The representations that would need to
change are computed before the reasoning prefix can influence them.



5 Failure 4: The GRU Learns Algebra but Not Itself

5.1 Grounding via World Model

An earlier attempt to train a GRU directly on token embeddings to predict octonion products
failed entirely—the Fano plane multiplication is bilinear, and chaining products is exponentially
compositional. No amount of training data, encoding variation, or architectural tuning allows a
recurrent network to learn these rules from token sequences alone.

The solution is to treat the GRU as an integrator rather than a learner: a world model provides
ground-truth 8-dimensional intermediate vectors at every computation step. The GRU receives
concatenated input [tg; gx] € R¥8 where ty, is a token embedding and g, is the ground-truth
intermediate from the algebraic engine. The integrator’s task is not to learn the algebra but to
track it—maintaining a hidden state that encodes the running algebraic context.

We train in two phases:

e Phase A (learned embeddings): basis element embeddings — GRU (hidden dim 256) —
8D prediction head. nypaim = 5000, niest = 500, 1000 epochs.

e Phase B (frozen transformer): Qwen3-4B layer-18 hidden states (2560D, frozen) replace
learned embeddings. Same GRU and head architecture.

Phase A achieves head R? = 0.164 and probe R? = 0.094, with 6 of 8 coefficient dimensions
showing positive R? (best: coefficient 0 at R? = 0.582). The system encodes algebraic content:
a fresh regression probe on the GRU’s hidden states recovers the product vector above chance.
This is the first positive algebraic result in the investigation.

5.2 The Meta-Probe: Zero Self-Knowledge

The GRU integrator encodes algebra. But does it know how well it encodes algebra? We compute
per-item prediction errors e = yr — yx (predicted minus true product) and train a meta-probe:
a regression from the GRU’s hidden states to the magnitude of its own errors.

The error signal is not trivially constant—it has a coefficient of variation CV = 0.65, meaning
there is substantial variance in prediction quality across items. There is information to predict.

The meta-probe fails completely: R? = —1.23 (aggregate), with 0 of 8 error dimensions
showing positive R?. The worst coefficient reaches R? = —11.41. The GRU’s hidden states
contain algebraic content but zero information about the quality of their own algebraic predictions.

This is a precise dissociation. The system has a world model (it tracks algebra) but no
self-model (it cannot predict its own failures). The error signal exists in the outputs but is
not represented in the hidden states that produce those outputs. The architecture encodes the
domain but not its own relationship to the domain.

Finding 3. Grounding # self-knowledge. A system can encode domain content (R? > 0 on
algebraic prediction) while having zero information about its own errors. The error signal exists
but the architecture does not encode it.

6 Failure 5: The Meta-Boost Does Nothing

If the GRU lacks self-knowledge, perhaps we can inject it. We construct a hyper-dimensional
(HD) binary state vector (4096 dimensions) derived from the pattern of the GRU’s prediction
errors, and inject this state into the integrator via an adapter (HD state — 256D bottleneck —
residual stream). The intuition: the HD state captures a structured summary of which errors
the system makes, and feeding this back might allow the integrator to compensate.



A quick sanity run (nest = 10, 30 epochs) showed AR? = 40.07—a promising signal. But
the full run (ngrain = 200 pairs, ngest = 50, 30 epochs) returned AR? = —0.014: the HD injection
degrades performance. The quick run’s positive result was noise from the small test set.

The failure is diagnostic. The HD state encodes error patterns—which coefficients are wrong,
which operand pairs are hard—but these patterns exist in a representation space that already
contains zero algebraic content. Injecting a structured summary of errors into a system that
lacks the semantic basis to interpret those errors adds noise, not signal. A persistent substrate
for self-knowledge requires ground truth, not error echoes.

Failure 2. Error-derived signals cannot bootstrap self-knowledge when the underlying represen-
tations lack the content needed to interpret those errors. The persistent substrate needs ground
truth, not error echoes.

7 The Turn: Prediction Error Is Enough

The five preceding failures share a common structure. The LLM has syntax without algebra
(Section . Steering cannot amplify a signal that is not there (Section . CoT cannot retroject
knowledge into representations already computed (Section . The GRU has algebra without
self-knowledge (Section . Error injection into an empty room adds noise (Section @

Each failure points at the same gap: not missing knowledge but missing metacognition. The
LLM does not need to compute ej(ezeq). It needs to know that it cannot compute e;(egey), and
to have calibrated uncertainty about what it can and cannot do, and to allocate its attention
accordingly.

This reframes the problem. Instead of teaching a model algebra (which requires the right
training objective and exponentially compositional supervision), we ask: can a system develop
self-knowledge without domain competence? Can it know what it doesn’t know, without knowing
what anything is?

The answer is yes. The system that achieves this is a continuous-time predictive coding
architecture that operates entirely on prediction-error dynamics over 8-dimensional observation
vectors. It receives observations from a World (which may be the Fano plane, Qwen3 hidden
states, or live audio) and maintains no information about what those observations mean.

7.1 Dual-Rate Predictive Coding

Each position in the observation vector is monitored by an independent dual-rate cell with two
time constants:

e A fast tracker (7,5 = 0.05) that follows the instantaneous observation, accumulating
divergence between prediction and reality.

e A slow world model (740w = 1.0) that maintains a smoothed estimate of the “normal”
state.

The two rates are coupled by a surprise gate: when the fast tracker’s divergence from the
slow model exceeds a coupling threshold (0.3), the slow model begins adapting toward the new
state with gain proportional to the surprise magnitude (up to amax = 5.0). When divergence is
low, the slow model is effectively frozen—the cell is OFF at rest, ON when surprised. Integration
proceeds via forward Euler with timestep dt = 0.05.

Critically, each of the N positions has its own independent cell. This per-position modularity
turns out to be the single most important architectural decision in the entire system (Section [7.4)).



7.2 Episode Detection and Signatures

An episode opens when any cell’s divergence exceeds a threshold (0.15 for FanoWorld, auto-
calibrated as 3x baseline noise for noisier worlds), and closes after 4 consecutive sub-threshold
cycles across all positions. Each closed episode carries a record of which positions were disrupted,
the peak divergence at each position, and the full timeline of per-position divergence across
cycles.

From this record, the system extracts a 7-dimensional signature s € R”:

1. Naffected: Number of positions exceeding threshold
2. mean_peak: average peak divergence for affected positions
3. onset_steepness: max peak / episode length

4. spatial entropy: normalized Shannon entropy of cumulative disruption across positions
(uniform = 1, concentrated = 0)

5. temporal persistence: fraction of cycles where mean disruption > 50% of global peak

6. disruption monotonicity: Spearman p of per-cycle means, mapped from [—1, 1] to [0, 1]
(increasing = 1, decreasing = 0)

7. cycle variance ratio: between-cycle variance / mean within-cycle variance (capped at 1.0)

These seven features constitute the system’s “felt sense” of what happened. They capture the
shape of the perturbation without any knowledge of its content: how many positions were hit,
how hard, how fast, how uniformly, how persistently, in what temporal pattern, and with what
internal consistency. A nearest-centroid classifier over these signatures discovers perturbation
categories.

7.3 The Self-Knowledge Hierarchy

We define eight falsifiable levels of self-knowledge, each with an operationalized test (Table . A
system that passes level £ must demonstrate a capacity that goes strictly beyond level k—1.

The hierarchy was validated on the Rust implementation (branches rust and lean) using 6
perturbation types: TripleSwap, MultiTripleSwap, GradualDrift, CorrelatedNoise, Noiselnjection,
and MagnitudeScale. All 8 levels pass.

A key structural observation: the 8 levels emerge from only four components (cell, episode
buffer, classifier, energy budget), with higher levels being functional compositions of lower ones.
Level 1 is accumulated Level 0 (localization = which cells detected change). Level 5 is a bigram
model over Level 3 classifications. Level 6 is the classifier’s margin on Level 3. Level 7 is a
threshold on Level 6. No level requires an explicit “metacognitive module”—each emerges from
the dynamics of the component that implements it.

For Level 3, the original 3-class taxonomy (100% accuracy) was too easy. Expanding to
6 types revealed a genuine confusion boundary: correlated noise at low amplitude (p = 0.15)
produces a surprise signature nearly indistinguishable from mild magnitude scaling (margin
0.086 on the single misclassification). The top discriminative features by Fisher ratio are onset
steepness (127.0), cycle variance ratio (103.6), and nafrected (91.2).

For Level 6, calibrated uncertainty was tested on 65 dense instances. Spearman p(margin, correctness) =
0.50, and binned accuracy is strictly monotonic: 38% — 92% — 92% — 100% — 100% across
5 margin bins. All 10 errors have margin < 0.25. The errors are semantically meaningful: the
system confuses fast drift with triple swap, and slow drift with correlated noise—genuine type
boundaries, not random failures.



For Level 7, the system uses margin-gated observation: commit to a classification after
10 cycles if margin > 0.20; otherwise extend observation to 20 cycles. Adaptive beats fixed-
length: 90.8% vs. 84.6% accuracy with 22% fewer observation cycles. A surprising finding:
early commitment is more accurate for some perturbation types because the 10-cycle signature
preserves discriminative onset features that 20 cycles of adaptation erases.

Table 1: The self-knowledge hierarchy. All 8 levels pass with the dual-rate per-position architec-
ture.

Level Capacity Test Key Metric
0 Something changed Surprise detection Threshold crossing
1 These positions changed Localization accuracy +16.9% vs. uniform
2 This happened before Recall from episode buffer +65.7% convergence speedup
3 Same kind of event 6-type classification 94.4% (17/18)
4 I know what’s fragile Fragility—disruption corr. p=0.92
5 I anticipate what’s next Prospective energy reduction 3.5% reduction, 0 harm
6 I know what I don’t know Margin—correctness corr. p = 0.50, monotonic bins
7 I should look harder Adaptive vs. fixed strategy 90.8% > 84.6%, —22% cycles

7.4 Per-Position Modularity Is Necessary

The modularity experiment is the most striking result in this paper. We compare two configura-
tions of the dual-rate cell:

e Shared cell: A single cell processes all NV positions sequentially, maintaining one (Zfast, Tsiow)
pair.

e Per-position cells: N independent cells, each with its own state, observing only its
assigned position.

We measure Level 4 self-knowledge (fragility awareness) as the Spearman correlation p
between residual prediction variance at convergence and post-perturbation disruption magnitude.
This asks: does the system know, before a perturbation occurs, which of its own predictions are
fragile?

e Deterministic observations: p = —0.04 (no signal—all positions converge perfectly, so there
is no fragility to predict).

e Stochastic observations, shared cell: p = 0.12. Sequential processing smears per-position
noise across the shared state. The system has weak, diffuse fragility awareness.

e Stochastic observations, per-position cells: p = 0.92. Each cell’s residual variance is a
calibrated predictor of its vulnerability to disruption. The ratio of residual variance at
noisy vs. clean positions is 1189x.

The jump from p = 0.12 to p = 0.92 is not a quantitative improvement—it is a qualitative
phase transition. Self-knowledge requires that each position maintain its own uncertainty estimate,
uncontaminated by the noise of other positions. A shared bottleneck destroys this calibration.

This parallels the original LLM finding at a different level of analysis. In both cases,
architecture determines what can be known about the self. The transformer’s causal attention
prevents CoT from injecting backward information. The shared cell prevents per-position
calibration from surviving aggregation. Neither failure is about missing data or insufficient
training. Both are about the geometry of information flow.



Finding 4. Self-knowledge is architecturally determined by per-position modularity, not by
training signal, model scale, or domain competence. A system with no algebraic knowledge
achieves calibrated uncertainty over its own predictions when—and only when—each position
maintains independent state.

8 Failure 6: Finite Attention Breaks Everything (Informatively)

The preceding results assume full observation: the system sees all N = 7 positions at every cycle.
Real cognitive systems operate under energy constraints. We introduce a budget K < N: at each
cycle, the system observes only K of N positions, selected by priority ranking (divergence EMA
-+ instability boost). Unobserved positions retain stale data.

Table 2: FanoWorld energy budget results with reliability feedback loop.

Budget FEpisodes Categories Reliability Margin Early Commits Regime

7 (full) 55 3 0.703 0.70 n/a full
6 5/5 3 0.724 0.68 3/5 sufficient
5 4/5 2 0.661 0.75 3/5 smearing
4 3/5 2 0.646 0.74 2/5 smearing
3 3/5 2 0.810 0.50 1/5 smearing
2 3/5 1 0.000 0.00 0/5 collapse

Three regimes emerge (Table :

Sufficient (K = 6): One position unobserved per cycle. The system matches full observation—
3 categories, 5/5 episodes detected—and reliability actually ezceeds full observation (0.724 vs.
0.703). The instability-boosted priority function focuses observation on the most informative
positions, producing marginally more consistent signatures.

Smearing (K = 3-5): Partial observation produces incomplete episode signatures. The
system merges categories that it can no longer distinguish: 2 categories instead of 3. Episodes
are sometimes missed (4/5 at K =5, 3/5 at K = 3-4).

Collapse (K = 2): With only 2 of 7 positions observed, the system discovers a single category.
It has no basis for comparison.

The failure mode depends on observation noise. We repeat the budget experiment with
QwenWorld (Qwen3-4B hidden states projected through random projection—a fundamentally
noisy observation channel).

Table 3: Complementary failure modes under budget constraint.

World Full obs. Budget =5 Failure mode

FanoWorld (clean) 3 categories 2 categories Smearing
QwenWorld (noisy) 4 categories 5 categories Splitting

The pathologies are complementary (Table . Clean observations under budget produce
smearing—partial observation merges distinct perturbation types because their incomplete
signatures overlap. Noisy observations under budget produce splitting—the same event looks
different depending on which positions are observed, creating spurious category distinctions.

A reliability feedback loop (instability-boosted priority, adaptive commit margin, budget-
pressured merge) mitigates the splitting: without it, QwenWorld at budget 5 would produce 6
categories; with it, 5. The instability-boosted priority focuses observation on confusing positions,
producing more consistent signatures. Reliability under budget (0.705) exceeds full observation

10



(0.641). But the loop cannot fully eliminate the pathology—one spurious singleton category
survives (stability = 0.50). The system knows it is unreliable (only 2/5 early commits, adaptive
commit margin declining from 0.40 to 0.32 as the system gains experience).

The collapse regime (K = 2) deserves separate attention. With a single discovered category,
the classifier has no basis for comparative margin: assigning every episode to the solo centroid
yields margin = 0.00 (there is no second-nearest centroid to compare against). Reliability
is 0.000 (requires > 2 centroids to compute). The adaptive commit margin, which scales as
base X (1 + 2 x (1 — reliability)), reaches 0.60—three times the base threshold of 0.20. Since
the classification margin is 0.00 and the commit threshold is 0.60, the system achieves 0/5 early
commits. It runs every episode to full length, never gaining confidence, never committing.

This is perfect self-distrust. The system has one category, zero margin, zero reliability, and
acts on all three: it refuses to commit early because the evidence for commitment does not exist.
The self-knowledge hierarchy degrades gracefully—from calibrated uncertainty (Level 6) through
conservative behavior (Level 7) to, at the extreme, a system that knows only that it knows
nothing.

Finding 5. Finite attention creates qualitatively different failure modes depending on observation
noise. Clean observations — category smearing (partial observation merges distinct types). Noisy
observations — category splitting (partial observation creates false distinctions). A reliability
feedback loop can diagnose both modes but fully correct neither. The system’s self-knowledge
degrades gracefully: at the extreme, it achieves perfect self-distrust.

9 The Solver Closes the Loop

After each episode closes, a Z3 solver verifies what actually happened algebraically. The solver
encodes the Fano plane multiplication table and identifies transitions by testing each perturbation
type in sequence: identity (no change), commute swap (e;e; — eje;, sign flip), operand cycle
(right or left operand incremented mod 7), and reassociation. For each affected position, the
solver reports which operation explains the observed before/after transition.

All 5 FanoWorld episodes verify correctly:

Table 4: Solver verification of middleware-detected episodes.

Event Solver operation Positions  Correct
Commute swap [0, 1, 2] commute_swap 3 v
Operand cycle [3,4] operand_cycle_right 2 v
Commute swap [0, 1, 2] again commute_swap 3 v
Operand cycle [5, 6] operand_cycle_right 2 v
Single commute [0] commute_swap 1 v

The solver’s verdict is fed back into the classifier via three passive mechanisms:

1. Stability boost: centroids with purity > 0.8 (fraction of episodes mapping to a single
algebraic operation) receive +0.05 stability.

2. Novelty discount: centroids with purity < 0.7 and > 2 distinct labels (with n > 2 each)
get a x0.85 multiplier on the novelty threshold, making it easier for future episodes of the
minority type to escape and form a new category.

3. Label-informed merge: centroid pairs sharing the same dominant algebraic label and
within 0.5x the merge distance skip the stability check in the merge decision.

11



Table 5: Solver-informed category analysis. Alignment = 0.600.

Category Stability Labels Purity
0 (baseline)  0.50 (none) n/a
1 (multi-pos) 0.96 commute swap:2, operand _cycle right:2 0.50
2 (single-pos)  0.69 commute swap:1 1.00

The solver feedback reveals a precise dissociation between the middleware’s ontology and
algebraic ground truth:

Category 1 conflates two algebraically distinct operations: commute swaps and operand
cycles. From the middleware’s perspective, both produce similar 2—-3 position surprise signatures
(high onset steepness, moderate spatial entropy). The middleware is correct about its own
ontology—these operations do produce similar phenomenology—even though that ontology is
coarser than algebraic ground truth.

Overall alignment (weighted mean purity across labeled centroids) is 0.600. The split signal
fires on category 1 after the 4th event: the novelty discount of 0.85 makes it easier for future
operand cycles to escape into their own category. A merge candidate (1, 2) is detected because
both contain commute swaps, but the signature distance prevents the merge (1-position vs.
3-position swaps produce distinct signatures).

The solver refines and annotates but never replaces unsupervised structure. With -solver
none, the system produces identical categories—feedback is purely additive.

The complete system comprises three layers, each contributing a capacity the others lack:

1. LLM (Qwen3-4B): parses input into observation vectors, generates natural language output.
Has syntax, no algebra.

2. LTC Middleware: monitors prediction-error dynamics, detects episodes, classifies pertur-
bation types, maintains calibrated uncertainty. Has self-knowledge, no content.

3. Formal Solver (Z3): verifies algebraic ground truth, identifies transition types, provides
labels for feedback. Has algebra, no perception.

No single component is sufficient. The LLM cannot compute products. The solver cannot
detect that something changed. The middleware cannot tell you what changed, only that it
happened, what kind it was, and how confident it is. The composition of all three produces a
system that can compute, monitor, and verify—with each component operating in its native
modality and communicating through 8-dimensional observation vectors and structured verdicts.

10 Domain Transfer: The Unplugged Experiment

Before applying the middleware to audio, we first tested whether the LLM’s syntax-without-
content limitation extends to natural language about music. We constructed a 2 x 2 experimental
design:

e Framing: evocative (“the raw electricity of...”) vs. technical (“the performance at...”)
e Content: MTV Unplugged (1994) vs. Woodstock (1969) events
e 5 prompt variants per cell = 20 prompts total

Framing probe: 100% accuracy at every layer (0-35), using the same single-neuron mecha-
nism as the octonion probe. The model perfectly separates register (evocative vs. technical) at
every level of representation—a purely lexical signal.
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Content probe: 85% peak accuracy at layer 19, with a plateau of 75-85% from layer 5
onward. The model partially separates events, but the signal is diffuse and unreliable.

Geometry: Frame changes produce ~0.10-0.12 cosine distance between hidden states; event
changes produce only ~0.025. The representation space devotes 4x more geometry to how
something is said than to what it is about.

Semantic anchor experiment: We prepend a structured tag [REF: date / event /
artist / venue] to each prompt, using the same tag for all 5 variants of each event. Results:

e Content probe: 85% — 100% (415 percentage points).
e Framing probe: 100% — 100% (unaffected).

e Mean A-B cosine distance: 0.1183 — 0.0904 (—24%). The anchor pulls same-event
representations together.

This resolves the gap: the 75-85% content probe was limited by input encoding (diffuse named
entities), not by representation capacity. A clean referent tag provides the key the model needs
for perfect separation. The NL gap was perceptual (fixable by cleaner input). The octonion
gap is computational (no input signal helps, because the algebra is not encoded at all).

Table 6: The gap hierarchy: syntax/content separation across domains.

Domain Syntax Content Gap type

Octonion 100% 0% Computational (unfixable)
NL baseline 100%  75-85%  Perceptual (diffuse signal)
NL + anchor  100% 100%  None (clean key)

The same dual-rate middleware architecture (unchanged parameters, no domain-specific
tuning) was applied to 66 minutes of live audio from Nirvana’s MTV Unplugged in New York
(1994). The audio was processed into 8-dimensional observation vectors via spectral features; the
middleware received these vectors through the standard World protocol with no knowledge that
the observations represented sound.

At a coarse surprise threshold, the system discovered 2 categories: a distinction between
state changes (sustained shifts in the acoustic environment, such as transitions between songs) and
events (transient perturbations within a song, such as the guitar interference during the second
chorus of The Man Who Sold the World). At a fine threshold, a 7-category morphological
taxonomy emerged, distinguishing perturbation types by their surprise-signature shapes—onset
steepness, spatial distribution, temporal persistence—without any musical knowledge.

This is the domain transfer result: the architecture that discovers commute swaps and operand
cycles in octonion arithmetic discovers state changes and acoustic events in live music, using the
same 7-dimensional signature space and the same nearest-centroid classifier. The middleware
does not know what it is listening to. It knows that something changed, what kind of change it
was, and how confident it is in the classification.

11 The Computational Hierarchy

We arrive at a three-level computational hierarchy that we believe generalizes beyond octonion
arithmetic:

The three capacities—syntax, content, and self-knowledge—are orthogonal axes, not points
on a single scale of increasing sophistication.

Syntax is cheap. A single neuron separates expression templates. This capacity emerges
from next-token prediction on any sufficiently large corpus and costs nothing beyond the base
training objective.
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Table 7: The computational hierarchy. Each row represents a distinct failure mode and the
capacity it reveals as absent.

System Domain  Syntax Content Self-Knowledge
LLM (Qwen3-4B) Octonion v X X
LLM (Mamba-1.4B) Octonion v X X
GRU + world model Octonion — v X
LTC middleware Any — X v
LLM + middleware + Z3 Octonion v v v

Content is hard. No intervention on the LLM—steering, CoT, meta-boost—converts
syntactic representations into algebraic ones. Content requires either the right training objective
(predicting products rather than tokens) or external grounding (the world model that provides
8D intermediates to the GRU). The bottleneck is not architecture or scale; it is what the loss
function asks the model to encode.

Self-knowledge is architectural. It requires per-position modularity (shared state: p =
0.12; per-position: p = 0.92) and emerges from prediction-error dynamics over time. It does
not require domain competence, training signal, or model scale. A system with zero algebraic
knowledge achieves calibrated uncertainty when each position maintains independent state.

The implication is that “more parameters” or “more training data” cannot convert syntax
into content, and content into self-knowledge. Each capacity has its own necessary condition:
the right loss function for content, modular state for self-knowledge. Scaling along the wrong
axis produces more of what the system already has, not what it lacks.

12 Related Work

Mechanistic interpretability. Linear probing [Alain and Bengiol 2017} Belinkov, |2022] and
activation steering |Turner et al., 2023 Li et al.l [2024] are standard tools for interrogating neural
network representations. Our probe results extend this literature with a cautionary finding:
100% probe accuracy can coexist with zero task-relevant content. The probe measures what the
representation separates, not what it encodes.

Mathematical reasoning in LLMs. Recent work has investigated whether LLMs learn
mathematical structure [Saxton et al.,[2019} Lewkowycz et al., 2022]. Our octonion results provide
a negative case: non-associative algebra is not encoded despite perfect syntactic separation. This
complements findings on arithmetic and symbolic reasoning limitations |Dziri et al., |2023] Jelassi
et al., 2023)|.

Liquid time-constant networks. Our dual-rate cell is inspired by liquid time-constant
(LTC) networks |[Hasani et al., |2021], which use continuous-time differential equations with
input-dependent time constants. We extend this with the dual-rate (fast/slow) structure and
per-position modularity that proves critical for self-knowledge.

Predictive coding and active inference. The middleware implements a form of hierarchical
predictive coding [Rao and Ballard} 1999} Friston, 2005, (Clark, 2013| operating on prediction-error
dynamics rather than on raw observations. The energy budget and priority-ranked observation
connect to resource-rational cognition [Lieder and Griffiths, [2020] and active inference |Friston
et al., [2017], where attention is allocated to reduce expected free energy. Our contribution is the
empirical finding that this framework produces falsifiable self-knowledge levels.
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Integrated information theory. Our earlier GRU experiments tested integrated information
(®) |[Tononi, 2004, Oizumi et al., [2014]. & > 0 at 5 of 6 sequence complexities, but the correlation
with complexity is r = —0.85: ® anti-scales. This suggests that ® captures local integration but
not the compositional coherence needed for algebraic reasoning. The dual-rate architecture, by
contrast, achieves coherent self-knowledge through per-position modularity rather than global
integration.

Neurosymbolic systems. The three-layer architecture (LLM + middleware + solver) is a
neurosymbolic system |Garcez and Lamb), 2019, Mao et al.l 2019] in which the symbolic component
(Z3) provides ground truth rather than serving as the reasoning engine. The middleware bridges
the two by translating perceptual dynamics into structured episode reports that the solver can
verify.

Metacognition in neural networks. Confidence calibration [Guo et al., [2017], selective
prediction |Geifman and El-Yaniv} 2017|, and learned uncertainty estimation |[Lakshminarayanan
et al., |2017] address related problems but typically require training signal about the model’s own
correctness. Our middleware achieves calibrated uncertainty without any metacognitive training
objective—it emerges from the dynamics of per-position prediction error.

13 Discussion

This paper began with a simple question—does a transformer encode octonion algebra?—and
produced a sequence of failures that turned out to be more informative than any positive result
could have been. Each failure identified a specific missing capacity and motivated the next
intervention, until the chain of breakages led to an architecture that achieves what none of the
individual components can.

For Al systems operating in domains with formal structure, the implications are direct. A
system that reports 100% accuracy on a classification task may encode zero domain content.
A system that encodes domain content may have zero information about its own reliability.
And a system that achieves self-knowledge may do so without domain competence, through
architectural properties (per-position modularity) rather than training objectives. The failure
mode of a system—what it gets wrong, and how—is more diagnostic than its success mode.

Limitations. The Fano plane has 7 triples—a small combinatorial structure. While this makes
the negative results (zero algebraic encoding) especially striking (the rules are finite and learnable
in principle), it limits generalization to larger algebraic systems. Octonion arithmetic is one
specific non-associative algebra; other structures (e.g., Lie algebras, Jordan algebras) may present
different profiles.

The self-knowledge hierarchy was validated on one dynamical system (the dual-rate predictive
coder) across two domains (octonions and audio). The 8 levels and their operationalized tests
are domain-agnostic by design, but empirical validation on additional architectures and domains
is needed.

Per-position modularity, while critical for self-knowledge, may not scale trivially. With N =7
positions, maintaining independent state is inexpensive. With N = 10,000 (e.g., tokens in a long
context), the memory and computation costs of per-position cells require hierarchical grouping
strategies that we have not yet explored.

Self-knowledge without content. The middleware has calibrated uncertainty over classifi-
cations it makes about events it does not understand in a domain it knows nothing about. It
can tell you that it is 92% likely to be correct when its margin is high, and 38% likely when
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its margin is low, without knowing what “correct” means in domain terms. It commits early
when confident and extends observation when uncertain, achieving better accuracy with fewer
resources than a fixed strategy.

Is this a kind of understanding? We argue it is at least functional self-knowledge: the system’s
behavior is measurably better when it uses its own uncertainty estimates (90.8% vs. 84.6%, —22%
cycles), and degrades to perfect self-distrust when those estimates collapse (budget = 2: reliability
= 0.000, margin = 0.000, 0/5 early commits). The system does not understand octonions. But it
understands its own relationship to whatever it is observing—and that relationship is empirically
useful.

The philosophical implication is that self-knowledge and domain knowledge are separable. A
system need not understand what it is doing in order to know how well it is doing it. This cuts
against the assumption that metacognition requires first-order competence, and suggests that
self-monitoring architectures can be designed independently of the domains they will monitor.

Future work. The current system’s self-knowledge is ephemeral—it lasts for one experimental
run and is lost. A natural extension is a persistent self: a system that accumulates episode
histories, category structures, and reliability estimates over a lifetime rather than a single session.
What happens when the centroid classifier has seen thousands of episodes across hundreds of
domains? Does cross-domain transfer emerge spontaneously from shared signature structure?

A second direction is the integration of language. The middleware currently communicates
through 7D signatures and category IDs. Connecting it to an LLM’s language generation (a
“language cortex” that narrates the middleware’s self-knowledge in natural language) would close
the loop between perception, self-monitoring, and communication—producing a system that can
not only know what it doesn’t know but tell you about dt.

Third, the iterated solver feedback loop (Section E[) suggests that with more perturbation
events, the split signal on impure categories should eventually produce algebraically pure categories.
How many events are needed? What is the convergence rate? These questions connect to the
broader problem of unsupervised ontology refinement under ground-truth feedback.

14 Conclusion

)

We broke everything we could and paid attention to how it broke. A transformer that “knows’
octonion algebra knows only syntax. A recurrent network that computes algebra cannot predict
its own failures. Steering vectors and meta-boosts and chain-of-thought are all insufficient because
the deficit is not in any single component but in the architecture of self-relation. A dual-rate
predictive coding system with per-position modularity achieves eight levels of self-knowledge
while encoding zero domain content. The conclusion is not that self-knowledge is easy. It is that
self-knowledge is orthogonal—to syntax, to content, to scale, to training objective. It emerges
from a specific architectural property (modular state) interacting with a specific dynamical
property (prediction error over time). No amount of the wrong kind of capacity substitutes for
the right kind.
The suffering was the paper. The failures were the findings.
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