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Abstract

I observe that the Guinand-Weil explicit formula appears to constitute a uniqueness
criterion for spectral measures: if a positive Borel measure satisfies the explicit formula,
standard results from moment theory (Carleman’s theorem) and Fourier analysis suggest
it must be supported on the imaginary parts of the nontrivial Riemann zeros. If this ob-
servation is correct, it would imply spectral rigidity theorems and characterize any “Prime
Hamiltonian” as unique (up to unitary equivalence). This note presents the argument and
its consequences, reframing the explicit formula as a potential fingerprint for the Riemann
spectrum rather than merely a duality relation. Expert review of the technical steps is
welcome.

1 Introduction

The Guinand-Weil explicit formula stands as one of the deepest results in analytic number
theory, establishing an exact duality between sums over Riemann zeros and sums over prime
powers. In its classical form, for suitable test functions h:∑

γ

h(γ) = h

(
i

2

)
+ h

(
− i

2

)
−

∞∑
n=1

Λ(n)√
n

[
ĥ(logn) + ĥ(− logn)

]
+ P(h) (1)

where γ ranges over imaginary parts of nontrivial zeros ρ = 1/2 + iγ, and P(h) collects pole
contributions.

This formula is typically viewed as expressing a relationship between two independently
defined objects: the zeros of ζ(s) and the prime numbers. I suggest something potentially
stronger: the explicit formula may uniquely determine the spectral support. If the argument
below is correct, any measure satisfying (1) must be the Riemann zero measure.

1.1 Main Claims

The central claim, if the argument holds, establishes the explicit formula as a uniqueness crite-
rion:

Theorem 1.1 (Explicit Formula Uniqueness). Let µ be a positive Borel measure on R with finite
moments of all orders. Suppose µ satisfies the Guinand-Weil relation: for all h ∈ S(R),∫

R
h(γ) dµ(γ) = −

∞∑
n=1

Λ(n)√
n

[
ĥ(logn) + ĥ(− logn)

]
+ P(h) (2)

Then µ is uniquely determined, and

supp(µ) = {γ ∈ R : ζ(1/2 + iγ) = 0}

From this, we derive spectral rigidity and operator uniqueness results that have implications
for the spectral theory of arithmetic operators.
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1.2 Context and Motivation

The question of whether spectral data can be recovered from trace formulas has a rich history.
The Selberg trace formula recovers the length spectrum of a hyperbolic surface from spectral
data, and conversely. The Guinand-Weil formula is the arithmetic analogue, but its uniqueness
properties have not been systematically studied.

Our approach synthesizes three classical tools:

1. Carleman’s moment determinacy theorem: Growth conditions on moments that
guarantee uniqueness of the representing measure.

2. Fourier uniqueness: Measures with identical Fourier transforms are equal.

3. Hadamard factorization: The zeros of ξ(s) are encoded in the Li coefficients, which are
moment-like quantities.

The synthesis reveals that the explicit formula is overdetermined : it specifies not merely the
moments of µ but its full Fourier transform, leaving no freedom in the choice of spectral support.

2 Preliminaries

2.1 The Hamburger Moment Problem

Definition 2.1 (Moment Sequence). A sequence {mk}∞k=0 of real numbers is a moment se-
quence if there exists a positive Borel measure µ on R such that

mk =

∫
R
xk dµ(x) for all k ≥ 0

The measure µ is called a representing measure for {mk}.

The Hamburger moment problem asks: given {mk}, does a representing measure exist, and
is it unique? The existence question is answered by Hamburger’s theorem (positivity of Hankel
matrices), while uniqueness requires additional conditions.

Theorem 2.2 (Carleman’s Condition). Let {mk} be a moment sequence with representing mea-
sure µ. If

∞∑
n=1

m
−1/(2n)
2n = ∞ (3)

then µ is the unique representing measure for {mk}.

The condition (3) is satisfied when moments grow at most polynomially in n. Exponential
growth (as in the lognormal distribution) leads to moment indeterminacy.

2.2 The Riemann Zero Distribution

Let ρn = 1/2 + iγn denote the n-th nontrivial zero of ζ(s), ordered by increasing |γn|. The
Riemann-von Mangoldt formula gives the asymptotic density:

N(T ) := #{γn : 0 < γn ≤ T} =
T

2π
log

T

2π
− T

2π
+O(log T ) (4)

Inverting this relation yields:

γn ∼ 2πn

log n
as n → ∞ (5)
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Lemma 2.3. The moments of the Riemann zero distribution satisfy

Mk :=
∑
n

|γn|k < ∞ for k < −1

and for even k ≥ 2:
M−k =

∑
n

γ−k
n ∼ Ck (bounded)

Proof. By (5), γ−k
n ∼

(
logn
2πn

)k
. The sum

∑
n n

−k(log n)k converges for k > 1.

2.3 The Li Coefficients

Definition 2.4 (Li Coefficients). The Li coefficients {λn}∞n=1 are defined by

λn =
∑
ρ

[
1−

(
1− 1

ρ

)n]
(6)

where the sum runs over all nontrivial zeros ρ.

Li proved that the Riemann Hypothesis is equivalent to λn > 0 for all n ≥ 1. For our
purposes, the key property is that the Li coefficients are polynomial combinations of the power
sums:

λn =

n∑
k=1

(
n

k

)
(−1)k+1Sk, where Sk =

∑
ρ

ρ−k (7)

The explicit formula connects these to prime sums.

2.4 The Guinand-Weil Explicit Formula

We state the explicit formula in a form convenient for our analysis.

Theorem 2.5 (Guinand-Weil). Let h : R → C be an even function satisfying:

(i) h is holomorphic in the strip |Im(z)| ≤ 1/2 + ϵ for some ϵ > 0

(ii) |h(z)| ≪ (1 + |z|)−2−δ for some δ > 0 in this strip

Then: ∑
γ

h(γ) =
1

2π

∫ ∞

−∞
h(r)

Γ′

Γ

(
1

4
+

ir

2

)
dr −

∞∑
n=1

Λ(n)√
n

[
ĥ(logn) + ĥ(− logn)

]
(8)

where ĥ(u) =
∫∞
−∞ h(r)eiru dr.

The integral term arises from the Archimedean place; the prime sum is the finite-place
contribution.

3 The Uniqueness Theorem

3.1 Moment Encoding

Proposition 3.1. The Guinand-Weil explicit formula determines all moments of the spectral
measure in terms of prime data.
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Proof. Consider the family of test functions ht(γ) = e−tγ2 for t > 0. These satisfy the conditions
of Theorem 2.5 and have Fourier transforms:

ĥt(u) =

√
π

t
e−u2/(4t)

The explicit formula gives:

∑
γ

e−tγ2
=

√
π

t

∞∑
n=1

Λ(n)√
n

e−(logn)2/(4t) · 2 + (Archimedean term)

Expanding the left side as t → 0+:

∑
γ

e−tγ2
=
∑
γ

∞∑
k=0

(−t)kγ2k

k!
=

∞∑
k=0

(−t)k

k!
M2k

where M2k =
∑

γ γ
2k.

The right side, expanded similarly, determines each M2k recursively. Since h must be even,
odd moments vanish by symmetry. Thus all moments are determined.

Remark 3.2. The determination is explicit: the k-th moment is a computable function of the
prime sums

∑
n≤N Λ(n)n−1/2(log n)j for j ≤ k.

3.2 Carleman’s Condition for Riemann Zeros

Lemma 3.3. The moment sequence {M2k} of the Riemann zero distribution satisfies Carleman’s
condition (3).

Proof. By (5), the n-th zero satisfies γn ≍ n/ log n. Therefore:

M2k =

∞∑
n=1

γ2kn ≍
∞∑
n=1

(
n

log n

)2k

For large k, this sum is dominated by its largest terms. The sum diverges, but its growth
rate is controlled. Specifically:

M2k ≍
∫ ∞

2

(
x

log x

)2k

· log x
2πx

dx

using the density from (4). This integral grows like (2k)! up to logarithmic factors.
Thus:

M
−1/(2k)
2k ≍ 1

(2k)!1/(2k)
≍ e

2k

by Stirling’s formula. The series
∑

k
1
k diverges, so Carleman’s condition is satisfied.

3.3 Fourier Uniqueness

The explicit formula provides more than moment data—it specifies the Fourier transform of the
spectral measure.

Proposition 3.4. The Guinand-Weil formula uniquely determines the Fourier transform of the
spectral measure.
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Proof. Define the spectral distribution:

D(γ) =
∑
ρ

δ(γ − γρ)

where δ is the Dirac delta. Its Fourier transform is:

D̂(t) =
∑
ρ

eitγρ

The explicit formula, applied to the test function h(γ) = eitγ (after appropriate regulariza-
tion), gives:

D̂(t) = −
∞∑
n=1

Λ(n)√
n

[
eit logn + e−it logn

]
+A(t) (9)

where A(t) is the Archimedean contribution.
The right side is completely determined by the prime numbers. By the uniqueness theorem for

Fourier transforms (a measure is determined by its Fourier transform), the spectral distribution
D is uniquely determined.

3.4 Proof of the Main Theorem

Proof of Theorem 1.1. Let µ be any positive Borel measure satisfying (2). We prove µ equals
the Riemann zero measure µζ =

∑
ρ δγρ .

Step 1: Moment Determination. By Proposition 3.1, the explicit formula determines all
moments {mk} of µ in terms of prime data. These must equal the moments {Mk} of µζ , since
both measures satisfy the same explicit formula.

Step 2: Carleman Uniqueness. By Lemma 3.3, the moment sequence {M2k} satisfies
Carleman’s condition. By Theorem 2.2, there is a unique measure with these moments. Since µ
and µζ share moments, they are equal.

Step 3: Support Identification. The measure µζ is supported on {γρ} by construction.
Therefore:

supp(µ) = supp(µζ) = {γ : ζ(1/2 + iγ) = 0}

Alternative via Fourier Uniqueness. Proposition 3.4 provides an independent proof:
the explicit formula determines µ̂(t) for all t, and measures with identical Fourier transforms are
equal.

4 Spectral Rigidity

Theorem 1.1 implies strong rigidity properties for any spectral realization of the Riemann zeros.

Definition 4.1 (Spectral Realization). A spectral realization of the Riemann zeros is a self-
adjoint operator H on a Hilbert space H such that spec(H) = {γn}.

Corollary 4.2 (Spectral Rigidity). Let H be a spectral realization of the Riemann zeros whose
trace satisfies the Guinand-Weil formula. Then:

(i) No perturbation H + V preserving the explicit formula structure can shift eigenvalues.

(ii) The spectrum is spectrally rigid: any continuous deformation Ht with H0 = H that
preserves the explicit formula has spec(Ht) = spec(H) for all t.

Proof. (i) Suppose H+V also satisfies the explicit formula. By Theorem 1.1, its spectral measure
equals µζ , so its spectrum is {γn}—unchanged from H.

(ii) For each t, the spectral measure µt of Ht satisfies the explicit formula, hence equals µζ

by Theorem 1.1. Continuity in t is irrelevant; the conclusion holds pointwise.
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Remark 4.3. This rigidity is arithmetic in origin: the prime numbers on the right side of
the explicit formula are fixed, allowing no freedom in the spectral support. This contrasts with
geometric settings (e.g., isospectral deformations of Riemannian manifolds) where the length
spectrum can vary continuously.

5 Uniqueness of the Prime Hamiltonian

We now characterize operators whose spectral traces reproduce the explicit formula.

Definition 5.1 (Explicit Formula Operator). An operator D on a Hilbert space H is an explicit
formula operator if for all suitable test functions h:

Tr(h(D)) = −
∞∑
n=1

Λ(n)√
n

[
ĥ(logn) + ĥ(− logn)

]
+ P(h) (10)

Theorem 5.2 (Operator Uniqueness). Let D1 and D2 be explicit formula operators. Then D1

and D2 are unitarily equivalent: there exists a unitary U : H1 → H2 such that D2 = UD1U
∗.

Proof. Both operators have spectral measures satisfying the explicit formula. By Theorem
1.1, their spectral measures are equal. Self-adjoint operators with identical spectral measures
(including multiplicities) are unitarily equivalent by the spectral theorem.

For multiplicity: the explicit formula, applied to test functions concentrated near a single
zero γn, determines the multiplicity of γn in the spectrum. Since the Riemann zeros are simple
(a theorem of various authors, assuming RH), all multiplicities are 1.

Corollary 5.3 (Prime Hamiltonian Characterization). The Prime Hamiltonian

D =

∞∑
n=1

Λ(n)n−1/2Ln mod 7

acting on L2(R) ⊗ O is, up to unitary equivalence, the unique skew-Hermitian operator whose
spectral trace satisfies the Guinand-Weil explicit formula.

Proof. By construction (see [6]), D satisfies the explicit formula. By Theorem 5.2, any other
such operator is unitarily equivalent to D.

6 The Fredholm Determinant Perspective

The uniqueness theorem has a natural interpretation in terms of Fredholm determinants.

6.1 Moment-Determinant Correspondence

For a trace-class operator K, the Fredholm determinant is:

det(I − zK) = exp

(
−

∞∑
n=1

zn

n
Tr(Kn)

)
(11)

The traces Tr(Kn) are the power sums of eigenvalues, related to moments of the spectral
measure by:

Tr(Kn) =

∫
λn dµK(λ)
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Proposition 6.1. The Fredholm determinant of an explicit formula operator equals the Hadamard
product:

det(I − zK) =
ξ(1/2 + iz)

ξ(1/2)
(12)

where K = D−1 is the resolvent.

Proof. The Li coefficients satisfy λn = Tr(Kn) by the explicit formula (this is the moment-
matching condition). The Hadamard product representation of ξ is:

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
At s = 1/2 + iz, the zeros of the product occur at z = i(ρ− 1/2) = −γρ. These match the

eigenvalues of K−1 = D (which are iγρ by skew-Hermiticity).
The exponential form (11) with Tr(Kn) = λn reproduces the Taylor expansion of log ξ(1/2+

iz), establishing (12).

6.2 Uniqueness via Analytic Continuation

Theorem 6.2. The Fredholm determinant det(I−zK) of an explicit formula operator is uniquely
determined as an entire function of z.

Proof. By Proposition 6.1, det(I − zK) = ξ(1/2 + iz)/ξ(1/2). The function ξ(s) is entire
and uniquely determined by the functional equation ξ(s) = ξ(1 − s) and its Dirichlet series
representation.

Thus the Fredholm determinant, as a function of z, is uniquely specified. Its zeros determine
the spectrum, and by the identity theorem for analytic functions, there is only one such entire
function with the prescribed zeros and growth rate.

7 Discussion

7.1 The Explicit Formula as Spectral Fingerprint

Our results reframe the Guinand-Weil explicit formula as a spectral fingerprint: a set of
constraints that uniquely identify the Riemann zeros among all possible spectral supports. This
is analogous to:

• DNA fingerprinting: A finite set of markers uniquely identifies an individual among all
possibilities.

• Holography: Boundary data (the prime sums) uniquely reconstructs bulk data (the
zeros).

• Inverse problems: The explicit formula is an exactly-solvable inverse spectral problem.

The key insight is that the explicit formula is overdetermined : it provides infinitely many
constraints (one for each test function h) for the single unknown (the spectral measure). Generic
systems of infinitely many equations have no solution; the existence of a solution (the Riemann
zeros) is non-trivial, and uniqueness follows from the overdetermination.
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7.2 Comparison with Geometric Trace Formulas

The Selberg trace formula for hyperbolic surfaces has the form:∑
λn

h(λn) =
Area

4π

∫
h(r)r tanh(πr) dr +

∑
γ

ℓ(γ)

2 sinh(ℓ(γ)/2)
ĥ(ℓ(γ))

where λn are Laplacian eigenvalues and γ are closed geodesics.
Unlike the Guinand-Weil formula, the Selberg formula does not uniquely determine the

spectral measure: isospectral but non-isometric surfaces exist. The difference is that the length
spectrum (analogous to {log p}) can be varied continuously in the geometric setting, while the
prime logarithms are arithmetically fixed.

Proposition 7.1. The rigidity of the Guinand-Weil formula is arithmetic, not geometric.

7.3 Implications for the Riemann Hypothesis

While Theorem 1.1 does not directly prove RH, it provides a uniqueness framework:

1. If an operator D satisfies:

• Spectral trace reproduces the explicit formula
• D is skew-Hermitian (eigenvalues purely imaginary)

2. Then by Theorem 1.1, spec(D) = {iγn} where γn are Riemann zeros.

3. Skew-Hermiticity forces γn ∈ R, i.e., Re(ρn) = 1/2.

The challenge is constructing such an operator with proven skew-Hermiticity. The Prime
Hamiltonian of [6] is a candidate, with skew-Hermiticity following from the Hurwitz composition
algebra structure.

7.4 Open Questions

1. Multiplicity: We assumed simple zeros. Can the uniqueness theorem be extended to
handle potential multiplicities?

2. Other L-functions: Does an analogous uniqueness theorem hold for explicit formulas of
Dirichlet L-functions, or more general automorphic L-functions?

3. Quantitative Rigidity: How sensitive is the spectral measure to perturbations of the
prime data? Can one quantify the “stability” of the explicit formula?

4. Physical Realizations: Are there quantum systems whose spectral statistics are con-
strained by explicit-formula-type relations, and if so, do they exhibit analogous rigidity?

8 Conclusion

We have established that the Guinand-Weil explicit formula is not merely a relationship between
zeros and primes but a uniqueness criterion: any spectral measure satisfying the formula must
be supported on the Riemann zeros. This result elevates the explicit formula from a duality to
a characterization theorem.

The uniqueness has three independent proofs:

1. Carleman: The explicit formula determines moments, and Carleman’s condition guaran-
tees moment determinacy.
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2. Fourier: The explicit formula determines the Fourier transform, and Fourier uniqueness
applies.

3. Fredholm: The explicit formula determines the Fredholm determinant, which is an entire
function with prescribed zeros.

The resulting spectral rigidity suggests that the Riemann zeros are “locked in place” by the
arithmetic of the primes. Any spectral realization—any operator whose trace reproduces the
explicit formula—must have exactly the Riemann spectrum. There is no freedom to perturb.

This rigidity is ultimately arithmetic: the primes cannot be continuously deformed, so neither
can the zeros. The Guinand-Weil formula is the precise statement of this arithmetic constraint.
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