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Abstract

I report an observation about the [[7, 1, 3]] Steane quantum error-correcting code: its
entanglement structure appears to be governed by a Fano/Anti-Fano duality. Nu-
merical computation shows the 35 possible 3-qubit subsystems partition into three
classes with distinct entropy and tripartite mutual information. The 7 “Anti-Fano”
triples—those with I3 = −1—correspond to the non-associative triples of the octo-
nions, while the 7 Fano lines correspond to associative (quaternionic) subalgebras.
I observe the numerical coincidence log2 |Φ| = ∆S = |I3| = 1 bit, connecting the
associator magnitude, entropy deficit, and tripartite mutual information. This sug-
gests a dictionary between quantum error correction and division algebra structure.
Whether this correspondence is deep or coincidental remains to be understood.
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1 Introduction
The Steane code [1] is a [[7, 1, 3]] quantum error-correcting code that encodes 1 logical
qubit in 7 physical qubits. Its stabilizer structure is intimately connected to the Fano
plane PG(2,F2), the unique projective plane over the two-element field.

In this note, I analyze the entanglement structure of the Steane code’s logical states by
computing the von Neumann entropy and tripartite mutual information of all 35 possible
3-qubit subsystems. The main observation is that these subsystems partition into exactly
three classes, with what appears to be a correspondence to octonionic algebra:

• The 7 Fano lines have entropy S = 3 bits and I3 = 0, corresponding to associative
(quaternionic) subalgebras of O.

• The 7 Anti-Fano triples have entropy S = 2 bits and I3 = −1, corresponding to
non-associative multiplication in O.

• The 21 generic triples have entropy S = 3 bits and I3 = 0.

The central numerical observation is the hidden bit identity :

log2 |Φ| = ∆S = |I3| = 1 bit (1)

where |Φ| = 2 is the associator magnitude for non-Fano triples, ∆S = 3 − 2 = 1 is the
entropy deficit, and |I3| = 1 is the magnitude of tripartite mutual information.

2 The Steane Code

2.1 Definition

The Steane code encodes 1 logical qubit in 7 physical qubits. The logical states are:

|0L⟩ =
1√
8

∑
x∈Ceven

|x⟩, |1L⟩ =
1√
8

∑
x∈Codd

|x⟩ (2)

where Ceven/odd are the even/odd weight codewords of the classical [7, 4, 3] Hamming code.

Definition 2.1 (Even-weight codewords). The 8 codewords forming |0L⟩ are:

0000000, 1010101, 0001111, 1011010,

1100011, 0110110, 1101100, 0111001

2.2 The Fano Plane

The Steane code’s stabilizers are defined by the Fano plane PG(2,F2), the unique pro-
jective plane over F2 with 7 points and 7 lines.

Definition 2.2 (Fano lines). The 7 lines of the Fano plane are:

L0 = {0, 1, 3}, L1 = {1, 2, 4}, L2 = {2, 3, 5}, L3 = {3, 4, 6},
L4 = {0, 4, 5}, L5 = {1, 5, 6}, L6 = {0, 2, 6}
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The Fano plane satisfies the following incidence properties:

• Each point lies on exactly 3 lines

• Each line contains exactly 3 points

• Any two points determine exactly 1 line

• Any two lines intersect in exactly 1 point

3 Entropy Analysis

3.1 Definitions

Definition 3.1 (Von Neumann entropy). For a density matrix ρ:

S(ρ) = −Tr(ρ log2 ρ) (3)

Definition 3.2 (Tripartite mutual information). For subsystems A, B, C:

I3(A : B : C) = S(A) + S(B) + S(C)− S(AB)− S(BC)− S(AC) + S(ABC) (4)

The sign of I3 has physical meaning:

• I3 = 0: Correlations decompose into pairwise terms

• I3 < 0: Genuine multipartite entanglement that cannot be reduced to pairs

3.2 Main Result: The Entropy Partition

Theorem 3.3 (Entropy partition). The 35 possible 3-qubit subsystems of the Steane code
partition into exactly three classes:

Type Count Entropy S I3

Fano Lines 7 3.0 bits 0
Anti-Fano Triples 7 2.0 bits −1
Generic Triples 21 3.0 bits 0

Proof. Direct numerical computation of all 35 reduced density matrices.

3.3 The 7 Anti-Fano Triples

Definition 3.4 (Anti-Fano triples). The Anti-Fano triples are:

{0, 1, 4}, {0, 2, 5}, {0, 3, 6}, {1, 2, 6}, {1, 3, 5}, {2, 3, 4}, {4, 5, 6}

These are characterized by:

• Sub-maximal entropy: S = 2 bits (vs. 3 bits maximal for 3 qubits)

• Negative I3: Genuine 3-party entanglement

• Zero pairwise correlations: I(A : B) = I(B : C) = I(A : C) = 0
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3.4 The Fano/Anti-Fano Bijection

Theorem 3.5 (Fano/Anti-Fano duality). There is a canonical bijection between Fano
lines and Anti-Fano triples: each Anti-Fano triple’s 4-qubit complement contains exactly
one Fano line.

Anti-Fano Triple Complement Fano Line in Complement Extra Point

{0, 1, 4} {2, 3, 5, 6} {2, 3, 5} 6
{0, 2, 5} {1, 3, 4, 6} {3, 4, 6} 1
{0, 3, 6} {1, 2, 4, 5} {1, 2, 4} 5
{1, 2, 6} {0, 3, 4, 5} {0, 4, 5} 3
{1, 3, 5} {0, 2, 4, 6} {0, 2, 6} 4
{2, 3, 4} {0, 1, 5, 6} {1, 5, 6} 0
{4, 5, 6} {0, 1, 2, 3} {0, 1, 3} 2

3.5 State Independence

Theorem 3.6 (State independence). The Fano/Anti-Fano entropy structure is indepen-
dent of the logical state encoded.

State Fano Line S Anti-Fano S I3 (Anti-Fano)

|0L⟩ 3.0 2.0 −1
|1L⟩ 3.0 2.0 −1
|+L⟩ 3.0 2.0 −1

Corollary 3.7. The Fano/Anti-Fano duality is a geometric property of the code space,
not dependent on the encoded information.

4 The Octonionic Connection

4.1 Octonion Multiplication and the Fano Plane

The octonions O form an 8-dimensional non-associative division algebra with basis {1, e1, e2, . . . , e7}.
The multiplication of imaginary units is governed by the Fano plane:

• If {i, j, k} is a Fano line with correct cyclic orientation: ei · ej = ek

• The 7 Fano lines define 7 quaternionic subalgebras H ⊂ O

4.2 The Associator

Definition 4.1 (Associator). The associator of three octonions is:

Φ(a, b, c) = (ab)c− a(bc) (5)

For associative algebras (R, C, H), we have Φ ≡ 0. The octonions are the unique
division algebra where Φ ̸= 0.

Theorem 4.2 (Associator structure). For octonion basis elements, the associator van-
ishes exactly on Fano lines:
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Triple Type Associator Φ(ei, ej, ek) |Φ|

Fano line 0 0
Non-Fano triple ±2em for some m 2

Remark 4.3. All 28 non-Fano triples have |Φ| = 2. The octonion associator alone does
not distinguish the 7 Anti-Fano triples from the 21 generic triples—that distinction comes
from the Hamming code structure.

4.3 What Distinguishes Anti-Fano Triples

Theorem 4.4 (XOR parity criterion). A triple {i, j, k} is Anti-Fano if and only if the
XOR parity xi ⊕ xj ⊕ xk is constant across all 8 codewords of |0L⟩.

This causes Anti-Fano triples to project |0L⟩ onto exactly 4 basis states (rank 4), while
generic triples project onto all 8 (rank 8).

4.4 The Correspondence

Fano Plane Steane Code Octonions

7 Lines S = 3, I3 = 0, stabilizers Φ = 0, associative
7 Anti-Fano S = 2, I3 = −1, constant XOR |Φ| = 2, non-associative
21 Generic S = 3, I3 = 0, mixed XOR |Φ| = 2, non-associative

5 The Hidden Bit Identity

5.1 The Fundamental Theorem

Theorem 5.1 (Hidden bit identity). The information hidden in Anti-Fano triples equals
exactly 1 bit, encoded in multiple equivalent ways:

log2 |Φ| = ∆S = |I3| = 1 bit (6)

where:

• |Φ| = 2 is the associator magnitude

• ∆S = 3− 2 = 1 is the entropy deficit

• |I3| = 1 is the magnitude of tripartite mutual information

Proof. From Theorem 4.2: |Φ| = 2 for non-Fano triples, so log2(2) = 1 bit.
From Theorem 3.3: S(Anti-Fano) = 2 and S(maximal) = 3, so ∆S = 1.
From Theorem 3.3: I3 = −1 for Anti-Fano triples, so |I3| = 1.
All three quantities equal 1 bit.
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5.2 Zero Pairwise Correlations

Theorem 5.2 (Zero pairwise correlations). For Anti-Fano triples, all pairwise mutual
information vanishes:

I(A : B) = I(B : C) = I(A : C) = 0 (7)

Yet the tripartite mutual information is I3 = −1.

Proof. For the Anti-Fano triple {0, 1, 4}:

S(0) = 1.00, S(1) = 1.00, S(4) = 1.00

S(01) = 2.00, S(14) = 2.00, S(04) = 2.00

S(014) = 2.00

Therefore:

I(0 : 1) = 1 + 1− 2 = 0

I(1 : 4) = 1 + 1− 2 = 0

I(0 : 4) = 1 + 1− 2 = 0

I3 = 1 + 1 + 1− 2− 2− 2 + 2 = −1

Remark 5.3 (Physical interpretation). The information is entirely in the irreducible 3-
party correlation. No pairwise measurement can access it.

6 The Associator Sign and Logical States

6.1 Sign-Flip Interpretation

For an Anti-Fano triple {i, j, k}, the octonion associator satisfies:

(eiej)ek = +X, ei(ejek) = −X (8)

The sign flip between left-association and right-association encodes exactly 1 bit of
information.

6.2 Distinguishing Logical States

Theorem 6.1 (Logical state distinguishability). The reduced density matrices on Anti-
Fano triples distinguish the logical states, while Fano lines cannot:

Triple Type ρ(|0L⟩) vs ρ(|1L⟩)

Fano line IDENTICAL
Anti-Fano DIFFERENT
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Theorem 6.2 (Associator sign operator). For every Anti-Fano triple, the XOR parity
operator perfectly distinguishes the logical states.

Define the associator sign operator:

ZAF = Z1 ⊗ Z2 ⊗ Z3 = diag(1,−1,−1, 1,−1, 1, 1,−1) (9)

Then for all 7 Anti-Fano triples:

⟨ZAF ⟩|0L⟩ = +1, ⟨ZAF ⟩|1L⟩ = −1 (10)

Proof. For Anti-Fano triple {0, 3, 6}:

• |0L⟩ projects onto states {|000⟩, |011⟩, |101⟩, |110⟩} — all EVEN parity

• |1L⟩ projects onto states {|001⟩, |010⟩, |100⟩, |111⟩} — all ODD parity

The XOR parity is exactly the eigenvalue of Z1Z2Z3.

Corollary 6.3. The logical Z operator, when restricted to an Anti-Fano triple, equals
the associator sign operator ZAF .

Remark 6.4 (Physical interpretation). The associator sign ±1 in O encodes the logical
bit 0/1 in the Steane code. Fano lines (Φ = 0) have no sign to encode, hence cannot
distinguish logical states. Anti-Fano triples (Φ ̸= 0) carry the sign, hence perfectly
distinguish logical states. This explains why I3 = −1: the tripartite correlation stores
the logical qubit.

7 Dimensional Reduction: O → H

7.1 Quaternionic Subalgebras

Theorem 7.1 (Dimensional reduction). Restricting from octonions to a quaternionic
subalgebra is equivalent to tracing out Anti-Fano qubits.

Each Fano line {i, j, k} defines a quaternionic subalgebra:

Hijk = span{1, ei, ej, ek} ⊂ O (11)

In the Steane code, “projecting onto H” means keeping only the 3 qubits of a Fano
line. The result:

• S = 3 bits (maximally mixed)

• All Anti-Fano coherence is lost

7.2 Associative Observers and Thermal Noise

An observer restricted to associative operations cannot distinguish (ab)c from a(bc). They
effectively compute the average:

(+X) + (−X)

2
= 0 (12)

Result: The hidden bit averages to zero, appearing as thermal noise.
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8 Holographic Interpretation

8.1 Bulk/Boundary Correspondence

Structure Role Entropy Information

Fano Lines Boundary/Exterior S = 3 (thermal) Public, observable
Anti-Fano Triples Bulk/Interior S = 2 (coherent) Hidden, protected

8.2 Hardware vs Software

• Fano Lines = the “hardware” (vacuum geometry, redundancy for error detection)

• Anti-Fano Triples = the “software” (logical qubit, protected information)

The code’s error-correcting power comes from this separation: errors on “hardware”
qubits can be detected and corrected because they don’t destroy the “software” correla-
tions.

8.3 The Black Hole Analogy

The Steane code realizes the structure of a black hole horizon:

1. Hawking radiation (boundary): Fano line measurements yield S = 3 (maxi-
mally mixed, thermal)

2. Interior (bulk): Anti-Fano triples hold S = 2 with I3 = −1 (pure state informa-
tion)

3. Horizon crossing: Tracing out Anti-Fano qubits destroys coherence

4. Information recovery: Accessing all 7 qubits recovers the logical qubit

The transition from bulk to boundary is exactly the dimensional reduction O → H:
• Non-associative algebra → Associative algebra

• Hidden information → Thermal noise

• I3 = −1 → I3 = 0

9 Why Octonions? Deriving 7 from First Principles

9.1 The Division Algebras

The four normed division algebras over R are:

Algebra Symbol Total Dim Imaginary Dim Properties

Reals R 1 0 ordered, commutative, associative
Complex C 2 1 commutative, associative
Quaternions H 4 3 associative
Octonions O 8 7 alternative (not associative)

The imaginary dimensions follow the pattern: 0, 1, 3, 7 = 2n − 1 for n = 0, 1, 2, 3.
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9.2 Six Independent Derivations of 7

9.2.1 Parallelizable Spheres (Adams 1962)

A sphere Sn is parallelizable (admits n linearly independent tangent vector fields every-
where) if and only if n ∈ {0, 1, 3, 7}.

9.2.2 Hurwitz’s Theorem (1898)

A composition algebra satisfies N(xy) = N(x)N(y) for some norm N . Such algebras over
R exist only in dimensions 1, 2, 4, 8.

9.2.3 Hopf Fibrations (Adams 1960)

Hopf fibrations S2n−1 → Sn with fiber Sn−1 exist only for fibers S0, S1, S3, S7.

9.2.4 Cross Products

A cross product on Rn satisfying a× a = 0 and |a× b|2 = |a|2|b|2 − (a · b)2 exists only in
dimensions 0, 1, 3, and 7.

9.2.5 Bott Periodicity

The homotopy groups of classical Lie groups repeat with period 8: πn+8(O) ∼= πn(O).

9.2.6 Cayley-Dickson Construction

The construction R → C → H → O → S (sedenions) loses a property at each step. At
dimension 16, zero divisors appear, breaking the division algebra property.

9.3 The Deep Answer

The number 7 is not chosen—it is mathematically inevitable. By Hurwitz’s theorem,
8 is the maximum dimension for a normed division algebra (the octonions O). Since
O = R · 1⊕ Im(O) decomposes into 1 real and 7 imaginary dimensions, 7 is the maxi-
mum dimension of the imaginary part of any division algebra—equivalently, the
maximum dimension where a cross product exists.

The Steane code’s 7 qubits, the Fano plane’s 7 points, and the octonions’ 7 imaginary
units {e1, . . . , e7} are all manifestations of this constraint on Im(O). The Fano plane
organizes the multiplication of these 7 imaginary units; the Steane code inherits this
structure through its stabilizers.

The 1-bit hidden information in Anti-Fano triples (|I3| = 1) may be the “last bit”
before overflow—the final unit of protected quantum information that the octonionic
structure can support.

10 Summary
We have established a precise dictionary between the Steane code and octonionic algebra:
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FANO PLANE PG(2,F2)

7 FANO LINES 7 ANTI-FANO TRIPLES

STEANE:
S = 3, I3 = 0

O:
Φ = 0

STEANE:
S = 2, I3 = −1

O:
|Φ| = 2

THERMAL / BOUNDARY COHERENT / BULK

10.1 The Fundamental Identity

log2 |Φ| = ∆S = |I3| = 1 bit (13)

The associator magnitude, entropy deficit, and tripartite mutual information all en-
code the same hidden bit—the logical qubit protected by the Steane code.
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